
Manual for multiX

A. Uldry and B. Delley

Paul Scherrer Institut, Switzerland.

May 2, 2012

1 Introduction

The program multiX allows you to calculate the energy levels of an atom
in a crystal field defined by the charges and positions of its neighbours, and
to plot the resulting XAS and RIXS spectra. The foundation of the code is
explained in the following publication:

Systematic computation of crystal field multiplets for x-ray core spectroscopies

Phys. Rev. B 85, 125133 (2012).

Please cite this paper if you make use of this code.

We presume that the code has been compiled and is ready to execute.
The present document describes how to run the code, the input required
and the output files.

2 Running the code

The executable multiX requires the presence of a file named INPUT in the
directory where you wish to run the code. If the executable multiX is in the
same directory, the code is fired off by invoking “multiX” at the command
line, and piping the results to the file “log”.

$./multiX | tee log

If the code resides in a different directory, the full path to the exe-
cutable should be given. For example, if the code is in the directory Multi-
plets/Source in your home directory:

$ ~/Multiplets/Source/multiX | tee log

If the code is in a location that is included in your path, then

1

http://link.aps.org/doi/10.1103/PhysRevB.85.125133

$ multiX | tee log

should execute the code.
It may be necessary to set the stack limit to “unlimited” in some system.

In bash, this can be done by adding the following line to the .bashrc file:

ulimit -s unlimited

The INPUT file, and the various output files, are described in the next
sections. Scripts that assist the running of the code for different tasks are
provided and described at the end of this document.

3 The INPUT file

The INPUT file must be present in the execution directory. It is a plain and
editable text file where the user defines which emitting atom is to be used,
the core-valence ground state configuration, and what are the parameters
and the task to perform. A bare minimum INPUT is shown in INPUT ex-
ample 1. This input would cause multiX to calculate the eigenvalues and

new MULT0 # Task: multiplets for the

ground state configuration

only.

atom Mn # The multiplets are calculated

for the open shells of a

Mn atom.

ground_state 2p6 3d5 # Core-valence ground state

configuration.

INPUT example 1: Minimal INPUT.

eigenvectors for an isolated Mn in the 2p6 3d5 ground state configuration.

The INPUT file contains inline entries, like those in the example INPUT

1, and block entries. Inline entries take the form

<keyword> <value> [<value> ...]

2

Block entries are typically used to list input energies for RIXS, and as
one of the alternatives for giving the crystal field. Examples will be given
below. Block entries take the form

begin_<keyword>

<value 1>

<value 2>

...

end_<keyword>

3.1 The crystal field

The crystal field is constructed from the charges and positions of the ions
surrounding the emitter. The code expects the positions in Ångström and
the charges in units of the electron charge (fractional charge is accepted). A
general multiplier is expected at the top of the list of positions and charges:

<multiplier>

<coord x1> <coord y1> <coord z1> <charge of ion 1>

...

<coord xn> <coord yn> <coord zn> <charge of ion n>

If only a few ions are making up the crystal field, it is possible to integrate
the crystal field list in the INPUT as a block entry:

begin_xtal

2.45

1.000000 0.000000 0.000000 -2.000000

-1.000000 0.000000 0.000000 -2.000000

0.000000 1.000000 0.000000 -2.000000

0.000000 -1.000000 0.000000 -2.000000

0.000000 0.000000 1.000000 -2.000000

0.000000 0.000000 -1.000000 -2.000000

end_xtal

Alternatively, especially if the number of ions is large, the list of charges
and positions can be placed in an external file. The name of the file is
declared in the INPUT:

xtal_file ligands.txt # the name of the file in the same

directory with the charges and

position of the Mn neighbours.

The file ligands.txtmust be in the same directory. An example of such
a file is shown in the ligands file 1. The elements in grey are for clarity and

3

1.000000 x y z q radius

0.186578 -1.117996 1.288676 -2.0 1.72 O 1

-1.269110 1.031996 0.776289 -2.0 1.81 O 2

-1.311288 -0.869050 -1.064677 -2.0 1.90 O 3

1.535878 1.145154 0.690135 -2.0 2.04 O 4

0.180936 1.394100 -1.490910 -2.0 2.05 O 5

1.636624 -0.982207 -0.978523 -2.0 2.14 O 6

Ligands file example 1: External ligands file.

convenience; they are optional and are in fact not read by the code (this is
valid for the block structure as well). On the first line, only the multiplier
is read. On subsequent lines, only the three positions and the charge are
read, the rest is ignored. The program stops reading when either the end
of file is met, or any other string differing from the positions-charge format.
The ligands file produced by the auxiliary program mk_lig, which adds an
“end” string below the list, can therefore be used directly, without editing.

3.2 Keywords for the INPUT file

The task keywords for the INPUT file are listed in Table 1. The list of possi-
ble inline multiplets keywords is given in Table 2. Furthermore, as described
Sec. 3.1, the crystal field can be given within a block structure (Table 3).

It is to be noted that a warning will be issued if the given number
of electrons in the chosen core shell does not correspond to that of the
atomic ground state. The radial wave functions for the ground state will be
calculated for the neutral atom in the fundamental state, regardless of the
core level occupation given via the user input. Similarly, the radial wave
functions of the core-hole state will be obtained by removing one electron
from the neutral atom core, and adding one to the valence shell. So in case
of mismatch between the number of core electrons declared and the neutral
atom core configuration, the interactions will be calculated according to the
user input, but the radial wave functions and the value of spin-orbit coupling
will be wrong. Note that practical x-ray applications usually consider a fully
occupied core as starting point.

The inline keywords for x-ray spectra are gathered in Table 4. The in-
coming photon energy(ies) for rixs must however be given in a block struc-
ture, see Table 5. Please note that if threshold_corr is present and non-
zero, the rixs input photon energies must be given with respect to this
correction.

4

Task keywords Possible values and what is calculated.

new

Multiplets are calculated from scratch.
MULT0 Eigenstates of the ground state.
MULT Eigenstates of the ground state and

the core-hole state.
XAS Eigenstates+XAS for incoming po-

larisation polar_in.
XAS_AV Eigenstates+XAS for averaged po-

larisations ⊥ to incoming beam
beam_in.

XAS_totAV Eigenstates+XAS for space-
averaged polarisation directions.

RIXS Eigenstates+RIXS for incoming po-
larisation polar_in and outgoing
polarisation polar_out.

RIXS_AVOUT Eigenstates+RIXS for incoming po-
larisation polar_in and averaged
polarisations ⊥ to beam_out.

RIXS_totAVOUT Eigenstates+RIXS for incoming po-
larisation polar_in and space-
averaged outgoing polarisations.

continue

Multiplets are read from files (from the previous run).
All XAS and RIXS as above, without recalculating the
eigenstates. Ex:
continue RIXS_AVOUT

Table 1: Task keywords for the INPUT file.

The broadening may be increased (or decreased) linearly between given
energy values, provided those energy values are within the spectrum bound-
aries. For the core-hole state, the spectrum boundaries are 15 eV above
and below the highest, respectively the lowest, core-hole state eigenvalues.
For rixs, the final state broadening may also be increased (or decreased)
between input values, if these are set between 15 eV above the highest, and
1 eV below the lowest, ground state eigenvalues. The keywords controlling
the change in broadening are collected in Table 6.

A further set of keywords allows the user to affect the scale of the spectra
(Table 7).

It is also possible to shrink the energy range of the spectrum using the
keywords in Table 8. Changing emin and emax does not however change

5

Keywords Description Default

atom Atomic symbol of the emitter. Ex:
atom Fe

ground_state Core-valence ground state config-
uration in standard form. Ex:
ground_state 2p6 3d1

xtal_file Name of the ligand file. Ex:
xtal_file myligands.txt

scaler_coulomb Scaling parameter for Coulomb interac-
tion. Ex: scaler_coulomb 0.8

1.0

scaler_xtal_field Scaling parameter for crystal field. Ex:
scaler_xtal_field 1.4

1.0

scaler_so_coupling Scaling parameter for spin-orbit coupling.
Ex: scaler_so_coupling 0.97

1.0

scaler_so_core Spin-orbit scaling parameter for core elec-
trons only. Ex: scaler_so_core 0

1.0

scaler_so_val spin-orbit scaling parameter for valence
electrons only. Ex: scaler_so_val 0.95

1.0

Table 2: Inline multiplets keywords.

Keywords Description Default

begin_xtal
Wrap crystal field list, see Sec. 3.1

end_xtal

Table 3: Crystal field as block entry.

the resolution, which depends on the broadening.

3.3 Parsing rules for the INPUT file

• The code stops with an error if the INPUT file is missing.

• The INPUT file is read line by line, and there should be only one in-
struction per line.

• Blank lines and lines starting with # are ignored, unless inside a block
structure, where they are likely to cause an error.

• The program will stop with an error if a keyword cannot be recognised,
or if the wrong type of values are given for a particular keyword.

• For each keyword, the program reads only the required values; the rest
of the line is ignored. It is therefore possible to write a short comment
on the same line, following the keyword and its values.

6

Keywords Description Default

core_hole_broad Core-hole lifetime lorentzian broadening,
in eV (≥ 0). Ex: core_hole_broad 0.6

0.2

threshold_corr Spectra energy shift, in eV. Ex:
threshold_corr 10.3

0.0

final_state_broad Final state lorentzian broaden-
ing for rixs, in eV (≥ 0). Ex:
final_state_broad 0.05

0.1

polar_in Linear polarisation direction of the incom-
ing light, in the crystal field frame. Ex:
polar_in -0.2 -3.1 0.65

0 0 1

polar_out Only read for RIXS task: linear
polarisation direction of the outgoing
light, in the crystal field frame. Ex:
polar_out -0.2 -3.1 0.65

0 0 1

beam_in Only read for XAS AV or XMCD
task: direction of the incoming light
beam, in the crystal field frame. Ex:
beam_in -0.2 -3.1 0.65

0 0 1

beam_out Only read for RIXS AVOUT task: di-
rection of the outgoing light beam,
in the crystal field frame. Ex:
beam_out -0.2 -3.1 0.65

0 0 1

Table 4: Inline x-ray spectra keywords.

• Entries can be listed in any order.

• All entries are read, but not all entries are necessarily used. For in-
stance, if the task is declared as new MULT and the entry polar_in 0 1 0

is also present in the INPUT file, then polar_in will be read, but not
used.

• If one keyword is entered more than once, only the last value (or block)
is registered; all previous entries are ignored.

• As a minimum, the atom and the ground state have to be given, as
well as the task. Omission of either will cause the program to stop.
For rixs tasks, the code will also stop if no input photon energies are
found.

• As all lines of the INPUT file are read and interpreted (unless preceded
by #), the code will stop if an xtal_file is declared but not present
in the directory, even if scaler_xtal_field is set to 0.

7

Keywords Description Default

begin_photon
Wrap photon energy list. Ex:

end_photon

begin_photon

307.5

310.2

end_photon

Table 5: RIXS incoming photon energy(ies) as block entry.

Keywords Description and default

deltag1 Core-hole broadening increased linearly from
core_hole_broad to core_hole_broad + deltag1

between wming1 and wmaxg1. Ex:
wming1

wmaxg1

wming1 716.0

wmaxg1 720.0

deltag1 0.16

Default: core_hole_broad const

deltagl Read for rixs only: final state broadening increased linearly
from final_state_broad to final_state_broad +
deltagl between -wmingl and -wmaxgl. Ex:

wmingl

wmaxgl

wmingl 2.3

wmaxgl 4.0

deltagl 0.16

Default: final_state_broad const

Table 6: Keywords controlling linear increase in the broadening.

• CAUTION: If not stated otherwise above, everything has a default
value (like the core-hole width, the incoming polarisation directions
etc). So if new RIXS_AVOUT is declared as the task, but no beam_out

is defined, the default (0 0 1) will be used.

• The scaling parameter for the spin-orbit coupling can be set separately
for the core and the valence electrons (scaler_so_core, scaler_-
so_val), or for both core and electrons indistinctly (scaler_so_-
coupling). By default all those parameters are set to 1. If both
the global scaler_so_coupling and scaler_so_core, respectively
scaler_so_val, are given in INPUT, then the core, respectively va-
lence, parameter overrides the global parameter.

• CAUTION: there are two points to keep in mind when applying continue
to the task. The first is that the INPUT file is read again in its entirety
even if the task keyword continue is in use, however, only the elements
needed for the task continuation will apply. So for example modify-

8

Keywords Description Default

spect_multip Multiplies the spectrum by a factor. Ex:
spect_multip 1.2

1.0

spect_yshift Shifts the spectrum along the y axis
by an amount (arbitrary unit). Ex:
spect_yshift 3.0

0.0

Table 7: Keywords that affect the scale of the spectra.

Keywords Description and default

spect_emin

spect_emax

Sets the lower and higher boundary for the spectrum.
Ex:
spect_emin 270.0

spect_emax 300.0

Default: for xas/xmcd, 15 eV above and below the
range of core-hole state eigenvalues; for rixs, 15 eV
above and 1 eV below the range of ground-state eigen-
values.

Table 8: Keywords for shrinking the energy range of the spectra.

ing the crystal field entry between a new MULT run and a continue

XAS run will have no effect: you must run new MULT again or do new

XAS. Modification to core_hole_broad would however apply, since
this property is not affecting the multiplets, only the spectrum. The
second is that the information on the number of eigenstates and their
values is read from the *.dat files produced by the first run of the
code. Do not temper with these files, as this may cause anything from
an unpredictable outcome to a code crash.

9

4 The output files

Before running the code, the user has as a minimum an INPUT file in the
working directory, and if applicable, a ligands file. Running the code pro-
duces an output which can be collected in a log file, as explained in Sec.
2. The log file writes out the input the code has been using, and lists the
eigenvalues obtained. It is therefore important to always inspect the log file
for potential errors and to verify that the input is what the user intended.

Several files with the *.dat extension will be created by multiX. The
files ending in *0.dat relates to the ground state configuration, while those
ending in *1.dat relates to the core-hole state. In principle, if produced,
only the following files are of interest to the user:

• spect-xas.dat: produced by invocation of the xas module. This is a
header-less file containing three columns. The first two are what the
user is generally interested in:

<photon energies> <xas intensity>

The third column is generated from the real part of 1

~ω+E0−Ei+ıΓ
,

instead of the imaginary part that simulate the XAS intensity.

• spect-rixs.dat: produced by invocation of the rixs module. This is
a header-less file containing three columns:

<-energy loss> <energy photon out> <rixs intensity>

Column 1 and 3 are the quantities usually plotted.

The spectra files can typically be read and plotted by external programs
that take columns as input, such as gnuplot, grace etc.

5 Examples

The examples shown here can be found in the inputs_examples subdirec-
tory of the bundle distribution.

5.1 Calculating multiplets

The example in INPUT 2 calculates multiplets for both the ground state and
the core-hole state, but does not produce any spectral file. As ligand file
ligands.txt, we can use the somewhat unrealistic example 2, which has
only one −2 charge along the x-axis:

10

new MULT

atom Mn

ground_state 2p6 3d5

scaler_coulomb 0.80

scaler_xtal_field 1.4

scaler_so_coupling 0.97

xtal_file ligands.txt

INPUT example 2: Only multiplets calculation.

1.000000

-2.403963 -0.00000 0.0000 -2.00

End

Ligands file example 2: A somewhat unrealistic ligand file.

5.2 Calculating XAS spectra

We would like now to proceed with producing the XAS spectrum for a given
polarisation direction. Continuing from the multiplet calculation in Sec. 5.1
(for calculation “from scratch”, just replace continue by new), we would
modify the INPUT so that it reads like INPUT example 3.

Running multiX generates the output file spect-xas.dat, which we can
save, plot etc. Maybe we have a XAS experiment to compare with, and we
notice that the whole spectrum is shifted to the left by 6.3 eV. We can correct
the calculated curve by adding threshold_corr 6.3 to the INPUT. Also, the
example 3 assumes that the incoming polarisation is along the bond. Maybe
we would like get the spectrum for a polarisation perpendicular to that bond.
Having saved the previous spect-xas.dat under a different name, we run
the program again this time with INPUT example 4.

The resulting curves are plotted in Fig. 1(a).

5.3 Calculating RIXS spectra

After inspecting the XAS spectrum, we decide to calculate the RIXS spectra
at the (corrected) energy 640.0 eV. The incoming horizontal polarisation is
given with respect to the crystal field, say (0.3420 0 0.9397) in this com-
pletely fictitious example. We collect the outgoing light at 90◦ from the
incoming beam (INPUT example 5). Maybe we do not believe that the final
state broadening is constant over the range. We can increase the broadening
between 0 and 6 eV, from 0.05 to 0.15 eV, as shown in INPUT example 6.

11

continue XAS

atom Mn

ground_state 2p6 3d5

scaler_coulomb 0.80

scaler_so_coupling 0.97

scaler_xtal_field 1.4

xtal_file ligands.txt

polar_in 1 0 0

core_hole_broad 0.3

INPUT example 3: Calculating the XAS spectrum.

620 630 640 650 660
Photon energy [eV]

0

0.05

0.1

0.15

0.2

0.25

X
A

S
 In

te
ns

ity
 [a

rb
itr

ar
y

un
its

]

polar_in 1 0 0
polar_in 0 1 0

(a) Fictitious XAS.

-10 -8 -6 -4 -2 0
Energy loss [eV]

0

0.01

0.02

0.03

0.04

0.05

0.06

R
IX

S
 In

te
ns

ity
 [a

rb
itr

ar
y

un
its

]

Constant final_state_broad = 0.05 eV
Broadening increase linearly between 0 and -6 eV (loss)

(b) Fictitious RIXS.

Figure 1: Spectra produced using the INPUT files in Sec. 5.

Fig. 1(b) shows the effect of the broadening on that example.

12

continue XAS

atom Mn

ground_state 2p6 3d5

scaler_coulomb 0.80

scaler_so_coupling 0.97

scaler_xtal_field 1.4

xtal_file ligands.txt

#polar_in 1 0 0 #pol 1

polar_in 0 1 0 #pol 2

core_hole_broad 0.3

threshold_corr 6.3

INPUT example 4: Another XAS calculation.

13

continue RIXS_AVOUT

atom Mn

ground_state 2p6 3d5

scaler_coulomb 0.80

scaler_so_coupling 0.97

scaler_xtal_field 1.4

xtal_file ligands.txt

#polar_in 1 0 0 #pol 1

#polar_in 0 1 0 #pol 2

polar_in 0.3420 0 0.9397 #pol LH

beam_out 0.3420 0 0.9397

core_hole_broad 0.3

final_state_broad 0.05

threshold_corr 6.3

begin_photen

640.05

end_photen

INPUT example 5: RIXS calculation.

14

continue RIXS_AVOUT

atom Mn

ground_state 2p6 3d5

scaler_coulomb 0.80

scaler_so_coupling 0.97

scaler_xtal_field 1.4

xtal_file ligands.txt

#polar_in 1 0 0 #pol 1

#polar_in 0 1 0 #pol 2

polar_in 0.3420 0 0.9397 #pol LH

beam_out 0.3420 0 0.9397

core_hole_broad 0.3

final_state_broad 0.05

threshold_corr 6.3

begin_photen

640.05

end_photen

wmingl 0.0

wmaxgl 6

deltagl 0.1

INPUT example 6: RIXS calculation with a linear increase of the broadening
through a part of the energy loss range.

15

6 Auxiliary programs

Auxiliary programs are found in the utilities subdirectory of the bundle
distribution. It is assumed that this directory is in your path. If this is not
the case, just like for multiX, you will have to precede the command with
the full path to the program , or copy the program locally and precede the
command with ./ (bash shell).

6.1 Generating the ligands file

A program called mk_lig may be used to generate ligand files for crystal
structures that include neighbours up to a given distance. It uses an input
file inc_file containing the three vector spanning the unit cell, and the
name and position of the atoms in the unit cell. A cif file usually only lists
the atoms in the irreducible unit cell, so it is usually necessary to use an
external program to explicitly output all the atom positions, and copy them
into the inc_file. The format of an inc_file is

$cell in angstroems of bohrs; from ICSD struc. num xxxxx

a1 a2 a3

b1 b2 b3

c1 c2 c3

$coordinates

Ti x1 y1 z1

Ti x2 y2 z2

...

O xn yn zn

$end

The code reads the unit cell vectors below the keyword $cell and the list
of atom positions below $coord. The atom at the centre, the emitter,

must be placed at the top of this list (Ti x1,y1,z1 in the exam-
ple above). The unit for the vectors and positions is either Ångström or
bohr. The output of the code, a file called ligands.txt, will however be
in Ångström, regardless of the input unit. The unit of the input has to be
declared (A or B) in the argument list when calling mk_lig. The cutoff for
the neighbour list must be given in that same unit. The program mk_lig is
called with the following list of arguments:

mk_lig <inc_file> <cut_off> <A for angs/B for bohrs>

<element> <charge> [<element> <charge> ...]

The first argument is the input file name. The second is the cutoff,
defining the radius within which neighbours have to be included. The third

16

argument is the input unit statement and is a single capital letter, either A
for Ångström or B for bohr. The next arguments are optional; they should
appear in pairs of atom symbol (corresponding to the atoms in the input file)
and the charge associated to that ion. For example, for a Ti atom in LaTiO3

with La3+, Ti+3 and O−2, with cell vectors and positions in inc_LaTiO3,
the command would be

mk_lig inc_LaTiO3 20 A Ti 3 La 3 O -2.0

Neighbours up to 20 Ångström from the Ti atom will be included.

If the elements are not all declared as arguments, the code does some
guessing. O is for example allocated −2 by default, if not otherwise stated
in the argument list. For the elements without a default defined in the code,
charges are distributed among the undefined elements on the principle of
charge neutrality. So in this particular case, the same result as above would
have been obtained with

mk_lig inc_LaTiO3 20 A Ti 3

6.2 Running and plotting scripts

An elementary script named run_multiX automates the call to unlimited
stack and the piping of the output to the log file:

$ run_multiX

An interactive facility, plt_mult, has been made available for plotting
XAS and RIXS spectra. It takes either xas or rixs as argument:

$ plt_mult xas

or

$ plt_mult rixs

The program asks the user if modifications to the plotting defaults are re-
quired (you may often answer N) and outputs either the eps file gxas.eps or
grix.eps, according to the argument given. The eps file can be viewed by
programs like ghoscript or ghostview:

$ gv grix.eps &

If you suspect that plt_mult will have suitable defaults, you may want
to have a look at the scripts run_XAS and run_RIXS, which automates the
ulimit setup, changes the task in the INPUT file, calls multiX, then plt_mult

accepting the defaults, and invokes the viewer gv. It is highly recommended
that you check and edit this script if you want to run it.

17

$./run_XAS

or

$./run_RIXS

18

	Introduction
	Running the code
	The INPUT file
	The crystal field
	Keywords for the INPUT file
	Parsing rules for the INPUT file

	The output files
	Examples
	Calculating multiplets
	Calculating XAS spectra
	Calculating RIXS spectra

	Auxiliary programs
	Generating the ligands file
	Running and plotting scripts

